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SUMMARY \ \D‘;}
2\

In the design of missile control systems, an analysis of the coupled
frequencies and mode shapes leads to the study of the generalized elgenvalue
problem D(s)x = O where D(s) is an nxn matrix whose elements are poly-
nomials in s and % is a vector. In this report, we develop a systematic
procedure for the evaluation of s and the corresponding vector x . A
FORTRAN II-D program for the IBM 1620 computer is appended to produce the com-
plete solution. A numerical example is provided.



I. INTRODUCTION

In the theory of linear vibrations of damped systems, one is naturally
led to a matrix differential equation of the form

<;§+B-—+c> x(t) = b(t) (1.1)

vhere A, B and C are nxn matrices with elements independent of t , and
x(t) and b(t) are lxa colum vectors. To compose the solution of (1.1),
the solutions of the homogeneous system are required. These solutions are
proportional to e5t  whence we get the nonlinear eigenvalue equation

(As2+Bs+C) x = O (1.2)

wvhere s is the eigenvalue and x its corresponding eigenvector. In this
report we develop algorithms to find s and the corresponding x . Equation
(1.2) can be generalized to the form

D(s)x = 0O (1.3)

wvhere D(s) is a nxn matrix vhose elements are arbitrary polynomials in s.
In the analysis of coupled frequencles and mode shapes of space vehicle control
systems, a system like (1.3) may arise. Though our ideas for the solution of
(1.2) can carry over for the solution of (1.3), our principal concern in the
sequel is techniques for the solution of (1.2).

II. SEIECTION OF TECHNIQUES

There are numerous possibilities for the solution of (1.2). For
example, if one could hypothesize that the damping in each mode is light, say
less than 10 per cent of critical, then it would appear feasible to design an
iterative procedure based on a perturbation of the linear system
(AsP+C)x = O . One difficulty is that the damping may not be small. Indeed
in the pian of space venhicles, the control equation can be so designed that,
in effect, large amounts of damping can be present in varicus modes. There is



yet another difficulty. In a known iterative procedure [l], if the suggested
algorithm for the evaluation of s converges, it is known that the convergence
is at least quadratic. Further, a theorem is available to establish a con-
vergence neighborhood, that is, a neighborhood of the true s within which
the iteration procedure converges. However, the radius of this neighborhood
is not readily reduced to an a priori form from the usual input data. Itera-
tion procedures have other disadvantages. For example, only one eigenvalue
can be found at a time, and each step of the iterative procedure requires the
inversion of an nxn matrix.

In view of the convergence uncertainty and other points mentioned
above, it appears desirable to develop a direct (that is, noniterative) solu-
tion for the nonlinear eigenvalue problem. To facilitate our understanding of
the equations which follow, we give a short summary of the ideas involved.

Suppose that in (1.2), the coefficient of B 1is replaced by s, . Under the
assumption that A is nonsingular, we can write
(I1s°4F)x = 0, F = A~1 (Bs*C) , (2.1)

where 1 is the identity matrix. We next seek the characteristic equations
corresponding to F . Note that this is not the characteristic equation for
our original problem (1.2) unless, of course, s, is an eigenvalue of (1.2).

We return to this point later. For now we remark that several procedures are
available to evaluate directly the characteristic equation for (2.1). Most of
these can be sensitive to the speclal peculiarities of the matrices and vectors
involved. For example, degeneracies can occur when certain quantities required
for division are null or nearly so. We propose to get the characteristic
equation for (2.1) by a method due to lLeverrier as modified by Faddeev [2,3].
See Fettis [4] for an exposition of the method together with an example.

Though this procedure requires more operations than those knewn by the names

of Krylov, Danilevsky, Samuelson and Bryan, see the references above and also
Householder [5], it is utterly insensitive to the peculiarities just noted
since no divisions are required, only multiplication and addition of matrices.
From this point of view, the method of Ieverrier is universal.

The characteristic equation for (2.1) can be written in the form

n

k 2 -
S (e, by =1, A= s . (2.2)
k=0



This last equation can also be used to represent the characteristic equation
for (1.2). In this event, it is easy to show that b, is a polynomial in s
of degree r . That is, we can write

r
r = &r-m® .
n=0

Now for each selected value of s, , we compute a value b, . If we compute
b, far (r+1) distinct values of Sy » then by use of the Lagrangian inter-
polation formula, we can evaluate the coefficients T/ . As r runs through
the sequence 1,2,...n , we require (n+l) values of s, . Thus, the method of
Leverrier must be repeated (n+l) times corresponding to (n+l) distinct values

of s5 .

Jt calls for remark that if the determinant of (As2+Bs+C) is
evaluated for (2n+l) distinct values of s , then the Lagrangian interpolation
method could be used to compute the coefficients of the characteristic equation.
In this event, one could dispense with the developments surrounding (2.1). We
have not experimented with this approach, for in some past considerations we
have found that round-off errors can seriously affect the accuracy of the poly-
nomial produced by the Lagrangian method as applied to high degree systems.

The suggested procedure tends to minimize this difficulty.

Once the characteristic equation is established, its roots are easily
determined by an iterative method due to Bairstow {6] . The corresponding
vectors are then determined by solution of the linear equation system (1.2)
or we may use (2.1) with 5§, replaced by the characteristic value s .

We now turn to an exposition of the equations used to accomplish the
various steps required in the solution of (1.2).

ITI. THE METHOD OF IEVERRIER

We have the linear system

Fx = \xx (3.1)




vhere in the notation of the previous section
F=a"1 (Bs,+c), A = -s° . (3.2)

The characteristic equation for (3.1) is expressed as

n
oA} =2 (- )l‘bn_kxk s by =1 . (3.3)
k=0

Thus given the matrix F , we seek the coefficients by . We first present a
summary of the procedure. ILet dij ; 1,3 = 1,2,...,n be the elements of a
matrix D . That is,

D= (dij) (3.4)
Then by the trace of D, written (TrD) we mean

n
(TrD) = 2 dj4 (3.5)
k=0

Sometimes the word "spur” is used instead of trace. We define matrices F, ,
Gk and scalars g, as follows.

F]_=F: q1=(TrFl), G]_’qu‘Fl

l\)&j
|
%8

Fn_l = FGn_e’ qn'l = (TI‘F _l)/(n—l) > Gn"l = qﬂ—ll - Fn-l

b
fl
3
Q
d
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(IrF )Mo ; G, = q T - F
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We shall prove that

% = by k=1,2,...n . (3.7)
Also G, is a null matrix. Thus
G, =0 and Fp =D, . (3.8)

This serves as a check on the operations. Of course, in practice G, 1is not
null in view of round-off errors. Thus the deviation of the computed Gy
from nullity may be taken as a measure of the accumulation of round-off error.
If F 4is nonsingular, then it follows that

. (3.9)

If F 1is singular, then G, is the matrix adjoint to matrix F . Once
the eigenvalues are known, the method of leverrier produces all the ingredi-
ents necessary to compute the corresponding eigenvectors. -let \; ,

i =1,2,...n , be the zeros of (1) . That is, Ay is an eigenvalue of (3.1).
Then the corresponding eigenvector, call it x i , 1s proportional to any
column of the matrix

n-1

r n-r-1
Q = }:0 (-VAx Gp, G =1 (3.10)
r=

The proof is as follows. IlLet

n
S o AE = . (3.11)
r=1

Clearly



If A dis an eigenvalue of F , then 2k is an eigenvalue of FK . so
= k ,
s = (TrF) (3.13)

Now there is a connection between the sk’s and the bk's known as Newton's
identity [7]. It reads

k-1

k-1
kbk = (' ) [ Sk'blsk_l+b2$k_2+- . -+(‘ ) bk_lsl] . (3.14 )

Thus the computational process is reduced to the evaluation of successive
powers of the matrix F . Our proof now proceeds by mathematical induction.
Obviously by = (TrF) = q; . So assume that gq. =b, for r =1,2,...k-1.
We show that gy = by . By the algorithm (3.6), we have

F, = (<) [Fk-ble'l+b2Fk'2+.. .+(-)k"lbk_lp] . (3.15)

So

(reFy) = kg = ()@ F)oy (7 Yo (1,72 o () (2m) |

k-1 k-
(-) [Sk'blsk-—1+b25k-2+°"+(') 1bk-151]
= Kby (3.16)

in view of (3.12)-(3.14). Thus gy = by and the induction is complete. By
the Hamilton-Cayley theorem, a matrix satisfies its own characteristc equation.
That is, see (2.3),

S (- F =0 . (3.17)

Now put k = n in (3.15) and when this is combined with (3.17), we get




which is the statement (3.8).

Fram (3.17), we have

n
S (o F L= F (3.18)

k=1

If this is compared with (3.15) for k = n-1 , we get

-l _ _
b F " =by 41 -Fp1 = G-y

which is the statement (3.9).

Using (3.10), we have

n
r n-r
(A I-FR, = Zo (=) (FGL._*G.) , G5 =0,
r=

and with the aid of (3.6), (3.7) and (3.3),

n
(AIFR = 3 (-)Ag by =0 or Fu= M . (3.19)
r=0

That is, any column u of the matrix Q’k is the eigenvector corresponding
to the eigenvalue )y .

We remark that in terms of our original problem, see (1.2), we do
not require either the eigenvalues or eigenvectors of F unless 5, 1s an
eigenvalue of the system (1.2). We only require the by's . However, for
the sake of clarity and completeness, we have presented the method of Leverrier

in its entirety.



IV. THE LAGRANGIAN INTERPOLATING POLYNCMIAL AND COMPLETION
OF THE SQLUTION

It is useful to review the theoretical procedure deduced thus far.
We begin with

(As®+Bs+C)x = © (4.1)
or egquivalently
(1s?+a~L(Bs+C))x = 0 . (4.2)
We consider the system
Fx =Ax , A= -s2 , F = a"1(Bs_tC) (4.3)

so that (4.2) and (4.3) are identical if sy = s . The characteristic equation
for (4.3) may be written as

n
o(h) = > (-)kbn_khk » by =1 (4.4)
k=0

It is easy to show that the characteristic equation for (4.1) may be expressed
as

n
alr) = > (-)kcn_kxk » Co =1, (¢.5)
k=0

where c¢) 1s a polynomial in s of degree k . Let




k
c,(s) = Z:o gl(,k)sr . (4.6)

Clearly

ck(so) =b, , k=12,...n . (4.7)

If the analysis which leads to (4.4) is repeated for (k+1) distinct values of
8, » then the Lagrangian interpolation method can be used to recover ck(s) .
Since k = 1,2,...,n,in all{n+l) distinct values of s, are required. The
manner of getting the Lagrangian interpolating polynomial follows. Let f£(x)
be a polynomial in x of degree r . Suppose that f(x) is known at the
(r+1) distinct points x5 , i = 0,1,..., r . Let fp = £(x.) . Then

r+l
_ Am(x)fm
f(x) = ng) _—Am(lﬁn) ,

Ap(x) = (xoxg)(xXy )ove (XX g Yxoxgyy )oe (k%) =TT (xoxy) 5 (4.8)
k=0

where a ' indicates that the factor (x-)gn) is omitted. If
- = k n-k
en) =TI G-7y) =2 (V¥ ,2,=0 , (4.9)
i=l k=0
and
k X ‘
S, =2 Y1, 8 =D > (4.10)
r:

- 10 -



then the pk’s are readily evaluated using the recurrence formula
O et P rooat(- )T s (4.11)
P = = | Sk P15k-1"PoSk2" Pg-151 | - .

The latter is the same as (3.14).

Thus the coefficients ggk) are known and the combination (4.5)
and {(4.6) yields the characteristic equation. The roots of the characteristic
equation may be found using Bairstow's iteration procedure, see, for example,
[6]. This technique is well known and is described in numercus sources other
than the one referenced. We dispense with further details, suffice it to say
that it is a generalization of the Newton-Raphson procedure for a single root
as it removes quadratic factors from a given polynomial, and so is efficient
for the recovery of complex zeros. Once the zeros are known, the correspond-
ing eigenvectors are found by solving linear systems of equations of (4.1)
with one equation omitted.

V. RECOMMENDATIONS FCR FUTURE RESEARCH

In this section we list some areas for future research bearing on
the problem of finding the eigenvalues and eigenvectors of matrices whose ele-
ments are not linear functions of the variable. The present report gives a
procedure for solving the problem if the elements are at most quadratic. A
natural research problem is the extension of present techniques and development
of new procedures to solve the problem when the matrix elements are arbitrary
polynomials in the variable. This is important for the applications since it
is known that the control equation can introduce polynomials of high order.

As remarked in the main body of this report, the algorithms now
employed are not necessarily the most economical from the point of view of
machine computation. On the other hand, we noted that the techniques used
for developing the characteristic equation of (2.1) may be described as uni-
versal in the sense that no divisions are required. Thus, the usual round-off
difficulties inherent in methods which require division by pivotal elements
are eliminated. Even so, we believe that studies should be made with other
rrocedures for evaluation of the characteristic equation. Another possible
economy would arise if the characteristic equation could be recovered by
evaluation of the determinant of D(s), see (1.3), for a sufficient number of
distinct values of s followed by use of the Lagrangian interpolation



formula. This procedure if successful would eliminate need for the method of
leverrier. This aspect should alsc be investigated.

Often in the analysis of a physical system, one is interested in the
effect on stability produced by variation of a parameter. Provided that the
parameter change is not too great, it would seem that once the eigenvalues are
known for a given state, the coarresponding eigenvalues for a slightly changed
state could be quickly determined by a perturbation process. Thus, perturba-
tion, and in general iterative techniques for the solution of the general
problem, should be investigated.

Another area of interest is the application of root-locus methods

on control system design to analyze system stability when certain system
parameters are permitted to vary.
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APPENDIX A

In this Appendix we present a flow chart for the evaluation of the
eigenvalues and eigenvectors for the system (ASS+BS+C)x = O as described in
the main body of the report. Also included is a description of the various
FORTRAN II-D programs and subroutines written for the IBM 1620 computer.
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uotqyonpay qnox) Juisn
8J0100AUa8TY saqnduio)

60 COW WV¥DOMJENS

JHVHD MOTd WVHDOUd

8§ uy Temwoudrod STIutg
® g suoTyenbyg
0T38TI8%0BIBY) gagsaadxy

90 20N WVHDOHJanNs

TetwoudTod uopyeTodrajur
uBTBuBIZET S248IUSYH

VON WVHDOUJHNS

6050W urmaBoadqgng
TT8) 0% ®BYBQ 93TqQUSSSY
BOSOW WYHDOHJANS

POYIaW 8, MOusITRg Juren
‘sonTeAusfIy 'a'T ‘sj00y
TeTwoulTog saynduwo)
ASATOd WYEDOHJHENS

(wexdoag NUTT TTED)

VTOSON
WYEDOMd ANTINIVW

AN

uoT3enby
0T98Ta9308vIBY) sajndiio)
8 37 TTED ¢ S uaAT8 = .04

DON RVED0HIENS

xoTdwo) = g 0 = X(D+5€+55Y)

TOLOW
RVEDOHd ANTINTYH

XTJIJ8W 3SI2AUT Saqnduo)

BEDTY

RVEDOYIHNS

- 15 -



FLOW CHART OF MAINLINE MOS0L

Read Add
NN, 1Z, SA™BL to
NSO ale
* Call MO3C2
Read Compute Coef-
Matrices ficients of
A, Bl, C Charac. Eq.

Compute
A—l
Call MO305
Generate
Bvaluate Lagrangian
A le nterpolation
Polynomial
Call MO306
Express Char-
Evaluate lacteristic Equa-
A™lm1 tions as a Single
] [Polynorinal in S
Call POLYSV
Solve for
Eigenvalues
Read
5, 0 Yes
o]
Evaluate
-1 Compute
S A
of "Bl Corresponding
Eigenvectors
End
N’

¥ The matrix B used in the notation for the general program flow chart
is now named Bl, as the designator B 1is used in another connection
in subprogram MO305.
- 16 -



PROGRAM MOSOL

Program MOS0l is the mainline program which calls several subprograms
and links with mainline program MO30lA to compute the eigenvalues and the
corresponding eigenvectors of a given matrix whose elements are polynomials
of degree no greater than two.

Restrictions or limitations:

1. The input matrices must be square. Also, the matrix whose ele-
ments are coefficients of S must be nonsingular. See the note below.

2. The input coefficients of the polynomials must be real numbers.

5. The number of values of 5, should equal the size of the input
square matrices plus one.

4, Compatibility of dimensions is necessary between the mainline
program and its subprograms and linked programs.

S. BSUBRQUTINE POLYSV will fail if the polynomial contains a repeated
quadratic factor. However, the possibility of this happening is quite rare.

Note: If A= (aij) , B= (bij) s, C= (cij) and x = (xl,x,e,..xn),
then the matrix system

(aS®+BSHC)Xx = 0
may be also written as

n
> (a.ijsz+bijs+cij)xj =0, 1i=1,2,..n
s

In missile systems, one of the modes at least is a rigid body mode. Suppose
Xy is the rigid body coordinate. Then original data might be given in such a
form that a3y =0 for i=1,2,...n . In this event, the raw data must be
conditicned before using program MO501 as we require A to be nonsingular.

To prepare the data in such a situation, replace x; by a new coordinate

-17 -



¥1/S . Then the coefficient of (y;/S) has the form (bilsz+ci18) . Other
rigid body modes, 1f present, are treated in a similar fashion. The condi-
tioned data are now in a suitable form to get the eigenvalues using the above
program. However, once an eigenvalue S is known, subroutines MC308 and MO509
produce the corresponding vector x . Thus the input data used in the latter
routines are the original data, not the conditioned data employed to get the
eigenvalue.

MATNLINE PROGRAM MO301

Input
READ STATEMENT : 100 READ 200, NN, 1Z, NSO
FORMAT STATEMENT: 200 FGRMAT (3I2)
Card
Columns Data Definition of Data
1-3 NN Size of input
square matrix
4-6 1z 1Z is a control code. If IZ > 0, program computes
eigenvectors corresponding to each eigenvalue. If
1Z < 0, program computes eigenvalues but no eigen-
vectors.
7-9 NSO Number of values for S, to be used

NN, LZ, NSO are fixed point data; right justify these data in their
respective card columns.

READ STATEMENT : READ 201, ((A(Z,J), I =1, NN), J =1, BN)

FORMAT STATEMENT: 20L FORMAT (3 F 25.0)

Card
Columns Data Definition of Data

1-25 A(1,J) A is a matrix whose elements are ccefficients of §°%;
26-50 read first column of data, then the second coiumn, €ic.
51-75

- 18 -



Example of Data on Cards When A is a 4 x 4 Matrix

Card Columns 1-25 26-50 51-75

1st Card A(L,1) A(2,1) A(3,1)

2nd Card A(4,1) A(1,2) A(2,2)

3rd Card A(3,2) A(4,2) A(L,3)
etc.

READ STATEMENT : READ 201, ((B1(I,J), I = 1,NN), J = 1,NN)

FCRMAT STATEMENT: 201 FORMAT (3F25.0)

Card
Columns Data Definition of Data
1-25 B1(1,1) Bl = matrix whose elements are coefficients of § ;
26-50 read 1lst column first, then 2nd column, etec.
51-75
If the input matrix Bl is a 4 x 4 matrix
Card Columns 1-25 26-50 51-75
lst Card B1(1,1) B1(2,1) B1(3,1)
2nd Card B1(4,1) B1(1,2) B1(2,2)
3rd Card B1(3,2) Bl(4,2) B1(1,3) etc.
READ STATEMENT : READ 201 ((c(1,J), I =1, NN), J =1, NN)
FORMAT STATEMENT: 201 FQRMAT (3 F 25.0)
Card
Columns Data Definition of Data
1-25 c(1,J) C = matrix whose elements are independent of S .
26-50 Read 1st column first, then 2nd column, etc.
51-75

- 19 -




If the input matrix = C(I,J), I =J =4 , the data cards should be

read:
Card Columns 1-25 26~50 51-75

1st Card c(1,1) c(2,1) c(3,1)

2nd Card c(4,1) c(y,2) c(2,2)

3rd Card c(3,2) C(4,2) c(1,3) etc.
READ STATEMENT: 126 READ 202, SS
FORMAT STATEMENT: 2@ FRMAT (F 25.0)

Card

Columns Data Definition of Data

1-25 Ss 5S =5, « Note: There should be as many cards

containing values of SS as the value of NSO in the
first card of the input data deck.

SUBROUTINE AILGEQ

This subroutine solves for the inverse of a matrix using a modified
Gaussian method.

SUBROUTINE ALGEQ (A, Bl, NA, MA, DET)

Definitions of the variables in the argument list

i

A(1,7), I, J = 1,2,...NA;= coefficient matrix

B1(1,J7), I,J = 1,2,...NA;= initially this is a unit matrix; after execution
of subroutine ALGEQ,this contains the inverse of
the coefficient matrix A(I,J)

NA

dimension of the square matrix A(I,J)

MA =1

DET = determinant of A(I,J)

-~ 20 -



SUEBRQUTINE MQO302

This subroutine is used to solve for the coefficients of the charac-
teristic eguation corresponding to each value of Soe

SUEROUTINE MO302 (A, AA, BB, NN, M, MA)

Definitions of the variables in the argument list

= dimension of the square matrix

RN
MA

1,2,..., NIl
M=1,2,.., NN

A(L,J3), I, J = 1,2,...,NN; = coefficient matrix formed in the mainline program
AA(1,J), I, J = 1,2,...,NN; = name of the intermediate matrices used in deter-
mining the coefficients of the characteristic

equation

BB(I,J), I =1,2,...N8+1, J = 1,2,...,NN; = coefficients of the characteristic
equation of the form

R N e T O . N I

SUBPROGRAM MO0305

This subroutine uses the Lagrangian interpolation method to inter-
polate between the coefficients of the characteris?is equations corresponding
to the various S,'s . The results will be the gi'j 's as shown below:

2n 211-2[ (1) (1)] 2n- 4[ 2(2)S§+g](_2)so+g(()2)]

o a2 g e |

-

on-

[<n)n ()L, (m)m-2, . (o) +e(”)J

-21 -




SUBROUTINE MO305 (B, X, SO, G, NO, JB)

Definitions of the variables in the argument list

B(1,J3), I =1,2,...N80, J = 1,2,...NS0-1;= coefficients of the characteristic
equations (corresponding to each
So) computed in subprogram MO302

NX = NN+ 1
50(1), I =1,2,...N50;= S, values

6(J,1), J =1,2,...N50-1, I = 1,2,...NS0; = interpolated coefficients gj(.'])

]

NO =NN+ 1

]

JB = NN

SUBPROGRAM MO306

This subprogram reads the output coefficients (gzg“j ) 's) previously
computed in subprogram MO305, sets S, = S, and cambines like terms to form
the desired characteristic eguation.

SUBROUTINE MO306 (NN, Gl, NO, JB, M2, PN)

Definitions of the variables in the argument list

NN = dimension of the input square matrices

G1(J,1), J = 1,2,...880-1, I = 1,2,...NS0; = interpolated coefficients (g:gj)’s)
computed in subprogram MC305

NO=RH8N+ 1
JB = NN
M2 = NN + NN

PN(I) where I = 1,2,...,M2+1;= coefficients of the desired characteristic
equation
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SUBROUTINE POLYSV

This subprogram uses Bairstow's method to calculate the roots of the
1 characteristic polynomial. Zero roots are automatically removed. The program
will fail if the polynomial contains a repeated quadratic factor.
SUEROUTINE POLYSV (N, PN, ZRR, ZRB, ZRC, JR, JC)

| Definitions of the variables in the argument list

N = order of the characteristic polynomial

PN(I), I = 1,2,...N+1;

]

coefficients of the characteristic polynomial

1,2,...JR; = real roots

|- ZRR(I), I

ZrRB(1), I =1,2,...JC;

real parts of the complex roots

ZRC(I), I

1,2,...JC;

imaginary parts of the complex roots

JR number of real roots

JC = number of complex roots

Definitions of the control values in subprogram POLYSV

- ERRD = the number which controls the accuracy to which the coefficients of the
quadratic factors are found. When the number used is 10”0 , the ith
iterates for the coefficlients of the guadratic factors are accepted

- only when they agree with the i-lst iterates to n digits.

TST3D = control number which prevents overflow due to multiplication during
iteration for the coefficients of the quadratic factors.
TST2D = number which controls the number of significant digits obtained from

the square root routine and is set equal to 10k, If Ay and Ay
are two consecutive iterates of the square root of A2 “and

Ay

< 1
108
is satisfied, then A; 1s accepted as the square root of Ae and is correct

up to the kth digit.
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TST1D = number which sets the decimal point of the iterates for the coeffi-
cients of the quadratic factors to the left of the digits. This is
accomplished by successive multiplication of the iterates by 0.1.
The value of this number is always O.l.

Scale = scale factor, here we used 1.0.

Additional input (optional): If it is desired to use different values (other
than those the program assigns) for the coefficients of the trial
quadratic, f(s) = s< + bs +c, enter b , c, and n where n is
a quadratic code number.

Sense switch settings: Set all sense switches off. If the optional input
is used, set sense switch one on.

Sense switch two on instructs the computer to print the coefficients
of the computed gquadratic factors.

Cutput: The eigenvalues of the characteristic polynomial are printed. The
real eigenvalues appear first. Each printed eigenvalue is of the
form x; or x;, y; where Xx; 1s a real root and Xy » ¥y cor-
responds to the camplex eigenvalue X5 t :ly'j .

PROGRAM MO301A

This program links with program MO30l and becomes the mainline pro-
gram to call subprograms in order to compute the eigenvectors corresponding to
each of the eigenvalues computed in program MG30l.

Program MO301A is linked to MO30l through this common statement:

COMMON NN, JR, JC, ZRR, ZRB, ZRC

Definitions of the variables in common

NN = dimension of input matrix
JR = number of eigenvalues which are real numbers
JC = number of eigenvalues which are complex numbers

ZRR(I), I = 1,2,...JR; = real eigenvalues
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ZRB(1), I

i

1,2,...dC;

real parts of the complex eigenvalues

ZRC(I), I

1,2,...JC;

imaginary parts of the complex eigenvalues

Qutput: The eigenvectors corresponding to each eigenvalue is printed in the
form

1 xj(.l) ygl )

e x2) L)

where the xi’s are the real parts and the yi's are the imaginary parts. If
the eigenvalue is real the yi’s will all be printed as zero.

Input Data for Program MO301A

READ STATEMENTS READ 201, ((A1(I,J), I =1, NU), J = 1,.NU)
READ 201, ((B1(I,J), I =1, NU), J =1, NU)
READ 201, ((c(1,J), I =1, NU), J =1, NU)

matrix whose elements are coefficients of S°2

«

B

matrix whose elements are coefficients of S
C = matrix whose elements are coefficents independent of S
NU = NN = dimension of square matrix
Read these data exactly as the initial matrix data were read.
Matrices Al, Bl, and C are coefficients of the given quadratic polynomial

elements.

Note: ©See the note following restriction 4 in the description of
Program MO301.
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SUBPROGRAM MO308

This subprogram assembles data for execution of subprogram MO309,
and calls subprogram MO309 which solves for the eigenvectors corresponding to
each of the eigenvalues.

SUBFROGRAM M0308 (R, SI, NU, Al, Bl, C)

Definitions of the variables in the argument list

SR = real part of a real or complex eigenvalue
SI = Ilmaginary part of a complex eigenvalue
NU = dimension of the input square matrices

A(1,J), 1,3 = 1,2,...NU; matrix whose elements are coefficients of S2 in
the given quadratic polynomials.

B1(1,J), I,J = 1,2,...NU; matrix vhose elements are coefficients of S in the
given quadratic polynomials.

c(1,3), 1I,d = 1,2,...NU; matrix whose elements are constants in the given
quadratic polynomials.

SUBFROGRAM MQO309

This subprogram utilizes the Crout reduction method to obtain the
eigenvectors corresponding to each of the eigenvalues,

SUBPROGRAM MO309 (AR, AC, Cl, CC, XR, XI, NA, DETR, DETI)

Definitions of the variables in the argument list

AR(I1,J), I,J = 1,2,...NU-1; real coefficients of a matrix

Cci(1), I =1,2,...NU-1; real parts of the coefficients on the right side of the
equation Ax = ¢

cc(1), I =1,2,...NU-1; imaginary parts of the coefficients on the right side
of the equation Ax = ¢

XR(1), I =1,2,...NU; real parts of the entries in the solution eigenvectors

X1(1), I = 1,2,...NU; imaginary parts of the entries in the solution
eigenvectors

- 26 -




PHYSICAL APPEARANCE OF INPUT DATA DECK

c(4,1)
c(1,1) c{2,1) c(3,1) C matrix needed to
compute eigenvectors
BL{4,1) . . .
/Bl(l,l) B1(2,1) B1(3, Bl matrix needed to
compute eigenvectors
(4,1) . ..

[ﬁ(l,l) CHO Al(s,lﬂu

Lss

/:(4,1) .« . .
/b(l,l) c(2,1) c(3,1)

—>» Al matrix needed to compute
eigenvectors
NSO cards with SS values, follow
card containing last element

of C matrix
Remaining C matrix

1st card of Cmatrix follows card
containing last element of Bl matrix

A/ —>Remaining Bl matrix
51(4,1) ... — 7 ng
B1(1,1) Bl(2,1) BL(3,1 1st caré of Bl matrix followlng card
containing last element of A wmatrix

/A(4,1) . ..

Remaining A matrix

A(1,1) A(2,1)  A(3,1) 7‘ / »>2nd card of deck, first card of matrix A

NN LZ NSO
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APPENDIX B

In the sequel, we list the FORTRAN II-D program described in
Appendix A.
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OO0

OO0

OO0

100

102

103
101

104

106

105

107

122

F‘
N
W)

PROGRAM M0301

COMPUTES THE EIGENVALUES AND EIGENVECTORS FOR
(AS2+BS+C)X=0,WHEN S IS COMPLEX

DIMENSION A(4y4)9Al(494),BLlC4y4)9Cl4y4) 1AA(444)4AC(494)9AB(4v4),
1ABSO(494)9BB{594)9S0(5),G(4945)9yPN(9)yZRR(40),ZRB(20),ZRC(20)
COMMON NNy JR+JC+yZRRyZRByZRC

READ 200 4NN,LZ¢NSO

NN=ABSF {NN)

A(NNyNN) = MATRIX WHOSE ELEMENTS ARE COEFFICIENTS OF S SQUARED:
B1(NN¢NN) = MATRIX WHOSE ELEMENTS ARE COEFFICIENTS OF S,
C(NN¢NN) = MATRIX WHOSE ELEMENTS ARE CONSTANTS.

READ 2019((A(I,J’,I=19NN”J=1’NN)

READ 201, ((BLl(IsJ)9I=1yNN)yJ=14NN)

READ 201, ((C(I4J)sI=14NN)yJ=1,sNN)

DO 101 I=14NN

DO 101 J=14NN

IF{1-4)103,102,103

AA(IsJ)=1.0

GO 70 101

AA{I+J1)=0.0

AllIoJd)=All1,J)

COMPUTES INVERSE MATRIX (MODIFIED GAUSSIAN METHOD)
A{T4Jd) X X(J)=AA(1,4J)

A=COEFFICIENT MATRIXyAA=RIGHT HAND SIDE VECTOR OR MATRIX,NN IS
SIZE OF THE SQUARE MATRIX Ay NN IS 1 IF AA IS A VECTOR,
DET=VALUE OF DETERMINANT A-MATRIX,AFTER EXECUTION

CALL ALGEQ{A,AAyNNy,NNoDET)

DO 104 I=1yNN

DO 104 J=1,4NN

AC{1+J)=0.0

AB(IyJ)=0.0

DO 104 K=1sNN

AC(T4J)=AA(1,K)#C(KyJ)+AC(I,J)
AB(I9J)=AA(I,K)#B1(KyJ)+AB(I,J)

MA=0

READ 202,55

MA=MA+1

SO(MA)=SS

DO 105 I=14NN

DO 105 J=14NN

ABSO(I,4J)=SS*AB(I,J)

DO 107 I=1sNN

DO 107 J=14NN

All,J)=0.0

AA(I,J)=0.0

A(14J)=ABSO(1,J)+AC(I,J)

AA(I,J)=A(1,J)

M=0

OBTAINS COEFFICIENTS OF THE CHARACTERISTIC EQUATION
CALL MO302(AyAAyBByNNyMy,MA)

IF(NSO-MA) 123,123,106

LAGRANGIAN INTERPOLATION

CALL MO305{BByMAySC+GeNGyJIB)

COMBINES LIKE TERMS »S=S NAUGHT

CALL MO306(NN,GyNOyJByM2yPN)
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C COMPUTES POLYNOMIAL ROOTS (BAIRSTOW,S METHOD)
CALL POLYSV(M2,PNyZRRyZRByZRCyJR¢JC)
IF(LZ)100,100,149
c IF LZ IS GREATER THAN ZERO COMPUTE EIGENVECTORS
149 CALL LINK(MO301A)
200 FORMAT(312)
201 FORMAT (3F25.0)
202 FORMAT(F25.0)

END

SUBROUTINE MO0302( A, AA,BByNN,yM,MA)
SUBROUTINE USED IN OBTAINING THE COEFFICIENTS OF THE
c CHARACTERISTIC EQUATION
DIMENSION A(444) s AA(444)9ASQ(444)+4BB(5+4)
101 M=M+1
BB(MA,M)=0.0
DO 102 I=14NN
102 BB(MAyM)=AA(I,I)+BB(MA,M)
DIV=M
BB(MA,M)=BB(MA,M)/DIV
107 DO 103 I=14NN
DO 103 J=14NN
ASQ(I4J)=0.0
DO 103 K=1yNN
103 ASQ(I4J)=A(I,K)#AA(KyJ)+ASQ(I,J)
DO 104 I=14NN
DO 104 J=1,NN
104 AA(I,J)=(BB(MA,M)#A(]I,J))-ASQ(I,J)
106 IF(M-NN)101,4105,105
105 RETURN
END

SUBROUTINE ALGEQ(A,B1lyNA,MA,DET)
FIND SOLUTION TO A#X=B WHERE A IS AN NA BY NA MATRIX
DIMENSION A(4494),81(4,4)
DET=1.
DO 2100 J=1.NA
X=0.
K=0
DO 2200 I=JyNA
IF(ABSF(A(1,4J))-X)2200,2200,2150
2150 X=ABSF(A(1I,J))
K=1
2200 CONTINUE
IF(K=J)2900,2290,42250
2250 DO 2260 1=JyNA
X=A(Jy1)
AlJeI)=A(K,y1)
2260 A(K,yI)=X
DO 2280 I=1,MA
K=BiiJel}
Bl1(JsI1)=Bl(KyI)
2280 Bl(Ky,1)=X
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DET=~DET
2290 X=A(JyJ)
DO 2300 I=JsNA
2300 A(JyI)=A0Jdy1)/X
DO 2310 I=1,MA
2310 Bl(JeI)=Bl(J,yI)/X
DET=DET#=X
IF(J-NA)2320,2400,2400
2320 L=J+1
DO 2100 I=L,NA
X=A(IyJ}
DO 2340 K=LsNA
2340 A(I+K)=A(I4K)=X2A(JyeK)
DO 2100 K=1,MA
2100 Bl(1,K)=B1ltI,K)=-X*#B1l(Je¢K)
2400 DO 2600 KK=1y4MA
DO 2600 I=24NA
K=NA+1-1
J=K+1
DO 2600 L=JsNA ‘
2600 BLIKsKK)=Bl{KyKK)I-A{KyL}*#B1{L,KK)
60 TO 2950
2900 DET=0.,
PRINT 2999
2999 FORMAT(30H A MATRIX IN ALGEQ IS SINGULAR)
2950 RETURN
END

SUBROUTINE MO306(NNyG1yNOyJJByM2, PN)
FOR CASE S NAUGHT = §
COMBINES LIKE TERMS TO FORM THE CHARACTERISTIC EQUATION
DIMENSION G1(495)9G2(445)4PN(9)
320 DO 321 K=1,JB
DD 321 J=1,N0
321 G2(KyJ)=0.0
DO 322 K=1,J8
Kl=K+1
DO 322 J=1,K1
K2=K1-J+1
322 G2(KyJ)=G1l(KyK2)
POL=0.0
M2=2#NN
PN(M2+1)=1.0
DO 300 K=1,M2
M1=M2-K+1
IF(M1)310,310,311
311 IF(K-NO)301,301,302
302 L=L+1
LL=0
GO TO 303
301 KK=K

1 =1
™ &

303 DO 304 J=LyKK
IF(J-JB) 309,309,306
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309
308

305
304
306
300

323

324

310

101
100

102

57
58

59

IF(L-1)305,305,308

LL=LL+]
Kl=KK-LL+1

GO TO 304
Kl=KK~J+1
POL=62(JeK1)+POL
PN(M1)=POL
POL=0.0

PN(K)yS ARE THE COEFFICIENTS OF THE CHARACTERISTIC EQUATION
PN(1) IS THE CONSTANT TERM
IF(ABSF(PN(1))-.1E-08)323,323,310

DO 324 K=1,M2
PN(K )=PN(K+1)
CONT INVE
M2=M2-1
RETURN
M4=M2+1
RETURN

END

SUBROUTINE POLYSV(NyPNyZRRyZRByZRCyJRyJC)
ZEROS OF POLYNOMIALS
DIMENSION PN(9),B(40)4G(40)4,ZRB(20)4yZRC(20)+ZRR(40)

NQ=0
ERRD=1.E~-13
TST3D=1.E+06
TST2D=1.E+15
TST1D=.1
SCALE=1.

IF(SENSE SWITCH 3)101,100
READ 999,ERRDy TST3Dy TST2D, TST1Dy SCALE

LP=N+1
ZPLP=PN(LP)
DELT=1./PN(LP)
DO 102 J=1,LP
PN{J)=PN{J)*DELT
JR=1

JC=1
IF(PN(1))2,58,42
LP=N

N=N-1
ZRR{JR)=,0
JR=JR+1

DO 59 J=1,LP
PN(J)=PN(J+1)
PN(LP+1)=,.0

G0 10 57
B(N+1)=,0
B(N)=.0
B(N~-1)=1.
G{N-1)=,0
GIN-2})=,0
CA=.0

DA=.0
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20
21

120

121
122
123

140
150

44
45

60
61
62
50
54

55
56

23

24
25

10
70
71

IF(SENSE SWITCH 1)20,21
READ 996,CA,DA

RUB=.0

DB=,0

NQ=NQ+1

NP=N-1

DO 4 K=2,NP

M=N-K
B(M)=PN(M+2)-B(M+2)#DA-B(M+1)=CA
IF(N=3)1747,45

DO 6 K=3,NP

M=N-K
G(M)=B{(M+2)~G(M+1)#CA-G(M+2)=DA
GA=B(2)~G(1)#CA-G(2)+«DA
GB=B{1)~-GA«CA-G(]1)*DA
R1=PN(2)-B(2)#DA-B(1)#CA
RO=PN(1)-B{1l)=DA
IF(GA-GB)120,121,121
XX=GB

GO 70O 122

XX=GA
IF(TST3D=-XX)123,140,140
XX=1e/XX

GO TO 150

XX=1a
DELTA=GB#XX#(B(1)-G(1)#DA)+GA#XX#GA*DA
IF(DELTA)45,44445
DELTA=1.,
CA=CA+((B(1)-G(1)»DA)=XX#R1-GA*XX*R0O) /DELTA
DA=DA+{GA#XX*R1#DA+GB#XX#R0) /DELTA
ERRB=DA-DB

ERRA=CA-RUB

RUB=CA

DB=DA

IF(ERRA)60461461
ERRA=-ERRA
IF(ERRB)62¢50950
ERRB=-ERRB
IF{1e-ERRA)54455,455
ERRA=ERRA#TST1D

GO TO 50
IF(1.-ERRB)56423423
ERRB=ERRB#*TST1D

GO TO 55
IF(ERRD~-ERRA)3,8,8
IF(ERRD-ERRB)}3,9,9
IF(SENSE SWITCH 2)24,25
PRINT 995,NQ,CA,DA
REST=-CA%,5
SURD=CA#CA-DA#®4,
IF(SURD)10,11912
BURD=-SURD

Xi=le

X2=,5#(X1+BURD/X1)
TEST=TST2D#(X2-X1) /X2
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B

72
73
74
75

81

11

12
82

13

14
15

18
19

16

17

105

109
103
106
107

110
104
108

fHAMma

0

994
995

IF{TEST)T72473,73
TEST==-TEST
IF{1e=TEST)T74475,75
X1l=X2

GO 70 71
BURD=X2
IF(SURD)81,82,82
SURD=BURD+* .5
ZRB (JC )=REST
ZRC(JC)=SURD
JC=JC+1
G0 10 13
ZRR{JR)=REST
ZRRUJR+1)I=REST
JR=JR+2
GO TO 13
BURD=SURD
GO 70 70
SURD=BURD=.5
ZRR{JR)=REST+SURD
ZRR{JR+1)=REST-SURD
JR=JR+2
N=N=-2
IFIN-1)17,16,14
IF(N-2)15,15,18
CA=B(2)
DA=B(1)
GO TO 9
NP=N+1
DO 19 I=14NP
PN(I)=B(I)

GO 70 2

==-B(1)/B(2)
ZRR{JR)=S

JR=JR+1

JC=JC~-1

JR=JR-1

PRINT 993
IF{JR)1064106,105
DO 103 J=1,4JR :
ZRR(J)=2ZRR(J)=SCALE
IF(SENSE SWITCH 4)109,103
PUNCH 994,ZRR{J)
PRINT 994 ,ZRR(J)
IF{JC)108,108,107
DO 104 J=1,J3C
ZRB(J)=ZRB(J)=»SCALE
ZRC(J)=ZRC{J) =SCALE
IF(SENSE SWITCH 4)110,104
PUNCH 994 ,ZRB(J),ZRC(J)
PRINT 994,ZRB(J) 4ZRC(J)
RETURN

EMDMAT ( 17 H

0
0

TURFIM v/ 7 1 EIGEIA'VA 4 ES)

FORMAT (/2F3
FORMAT (/15H

S
)

T
2
0

2O

F
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996 FORMAT{2F9.0)
999 FORMAT(3E9.042F5.1)
END

SUBROUTINE MO305(ByNX4S0yGyNO,JB)
INTERPOLATION METHOD
DIMENSION B(594),S0(5),6(495)yS(5),DEN(5),P(5)
100 NyY=NXx-1
Glly1)=((B(1ly1)%(=SO(2)))/(SO(1)=-S0(2)))+((B(2,41)%(~-S0(1)))/
1(S0(2)-S0(1)))
G(1ls2)=(B(19e1)/(SO(1)-S0O(2)))+(B(2,1)/(S0(2)-S0(1)))
DO 112 I=24NY
ND=1+1
DO 112 J=1.ND
112 6(14J)=0.0
NO=2
101 NO=NO+1
DO 110 JA=1,NO
DEN(JA)=1.0
DO 106 J=1,NO
106 S{J4)=0.0
IX=0
107 IX=IX+1
DO 103 J=1,NO
1F(SC(J4))120,103,120
120 1IF(JA-J)108,103,108
108 S(IX)=SO(J)e#IX+S(IX)
103 CONTINUE
IF{IX-NO)107,109,109
109 DO 102 J=1,NO
IFtJA-J)116,102,116
116 DEN(JA)=(SO(JA)-SO(J))#DEN(JA)
102 CONTINUE
P{1)=S(1)
JB=NO-1
DO 105 K=2,JB
XK=K
P(K)=0.0
DO 104 J=2,K
Kl=K=J+1
JJl=Jd=-1
104 P(K)=((~1o)a®JgJl)#(P(J~1)#S{K1))+P(K)
KK1=K-1
PIK)=(({=1e)nuKK1)#{1e/XK)#(S(K)+P(K))
105 CONTINUE
DO 110 K=1,NO
NB8=NO-K+1
KK=K~1
IF(NB-NO)114,113,114
113 GUJIByNO)={{(-1.)=eKK)*#B(JA,JB)})/DEN(JAY+G(JB4NO)
60 TO 110
114 G(JByNBI=S{{{~1.imeKK)#P{KKi®#B{JAyJBI1/DEN{JA}+
110 CONTINUE
115 IF(NO-NY)101,101,117

D )\
JDYIND

@
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117 CONTINUE
RETURN
END

SUBROUTINE M0308(SRySIyNUyAl,4B1,4C)
SOLVES THE SYSTEM (AS2+BS+C)X=040R EX=04FDR COMPLEX NUMBERS
DIMENSION Al1(494)9B1l(494)3Cl494)9E(494)4EC(494)43CL(4)9CC(4)4XR{4),
1XI(4)9AR(393)4,AC(3,3)
SR2=SR#SR-SI#S1]
SI2=SR#SI+SI#5R
DO 102 J=1,NU
D0 102 I=14NU
E(I9J)=A1(T19J)#SR2+B1(14J)=SR+C( I,y J)
102 EC(IsJ)=Al(I4J)=SI2+B1(I,J)#SI
FIND SMALLEST ELEMENT
IF(SI)16141624161
162 DO 163 K=1,yNU
163 XR{K)}=E(KyK)
GO TO 164
161 DO 160 K=1yNU
ARG=(E(KyK)*#E(KyK)+EC(KyKI*EC(KyK))
160 XR(K)=SQRTF(ARG)
164 K1=1
105 TEST=XR(K1)
DO 111 J=1l.NU
IF(J-K1)1424111,4142
142 IF(XR(J))}14391444145
143 IF(TEST)146,150,150
146 IF(TEST-XR(J))111,1114150
144 IF(TEST)111,111,150
145 IF(TEST)111l,111,147
147 IF(TEST-XR(J))111y111,150
150 K1=J
GO TO 105
111 CONTINUE
NEGLECT K-TH EQUATION
NW=NU-1
DO 115 I=1yNW
IK=1
IFIK1-1)117,1174116
117 IK=I+1
116 DO 115 J=1yNW
JK=J
IF(K1-J)11941199118
119 JK=J+1
118 AR(I9J)=E(IK,yJK)
ACLIJ)=EC(IKyJIK)
115 CONTINUE
DO 120 K=1,NW
K A=K
IF(K1~-K)121,121,165
121 KAsK+1

165 C1(K)=~E(KA,K1)
120 CC(K)=-EC(KA,K1)
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130

129

149
140
141
130
152

137
133

135

153

126
201
203

CALL MO309(ARyACyC1lseCCyXRyXIyNW)
PRINT 203

DO 128 M=1,NU
IF(K1-M)1294130,131

Cl(M)=1.0

CC(M)=0.0

GO TO 128

Cl(M)=XR(M~-1)

CC(M)=XI(M-1)

GO 7O 128

Cl(M)=XR(M)

CCiM)I=XI(M)

CONT INVE

DO 133 K=1,NU

PRINT 2064%;C1(K);CC(K)

RETURN

FORMAT ( 30HOTHE CORRESPONDING EIGENVECTOR//)
FORMAT (124 2E25.16)

END

PROGRAM MO301A

COMPUTES EIGENVECTORS

DIMENSION ZRR(40)9ZRB(20)9ZRC(20)4ZRI(10)yA1(444)4BLl(444),C(444)
COMMON NNy JRyJCyZRRyZRByZRC

READ 201y ((A1(I4J)9I=14NN),J=1,NN)

READ 201y ((B1(IysJ)eI=1yNN)yJ=1,NN)

READ 2015 ((C(IyJ)sI=14NN)yJ=1yNN)

NUM=0

IF(JR)I13T91379141

DO 130 K=1,JR

ZRI(K)=0.0

NUM=NUM+1

PRINT 2039yZRR({NUM) 4 ZRI (NUM)

CALL MO308(ZRR{NUM),ZRI{(NUM),NNyA1,B1,C)
IF(JR-NUM)137,137,152

IF(JC)1264126,4133

K1=JR+1

DO 135 J=1,4C

ZRR(K1)=ZRB(J)

ZRI(K1)=ZRC(J)

Kl=K1l+1

KE=K1l-1

NUM=NUM+1

PRINT 2039ZRR(NUM) 4 ZRI (NUM)

CALL MO308(ZRR(NUM) 9ZRI{NUM) 4NN, Al,B1,C)
IF(KE-NUM) 126,126,153

CALL EXIT

FORMAT {3F25.0)

FORMAT (17H1THE EIGENVALUE =2E24.15//)
END

SUBROUTINE MO309(ARyACyC1,CCyXRyXIyNA)
CROUT REDUCTION
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DIMENSION AR(343)9AC(3,3),AP(343)9ACP(343),4C1(4)+sCC(4),CCP(4),
1CP(4) 4 XR(4) X1 (4)

100

102
103
106

104

107

109

108

117

113

114

105
110

112
111

115

101
125

118
121
119

122

116

DO 101 J=1,NA

K=0

DO 106 I=14NA

IF(ABSF{AR(I,J)))103,102,103
IF(ABSF(AC(I,J)))103,106,103

K=1

CONT INUE

IF(K=-1)130,104,104

DO 117 I=JsNA

SAM=0.0

SUM=0.0

IF(1-J)107,108,107

JN=J-1

DO 109 K=14JUN

SAM=SAM+ (AP (I 4K)#ACP{KyJ)+ACP(I K)®AP(KyJ))
SUM=SUM+(AP(I K)#AP(Ky J)-~ACP(I4K)®ACP(KyJ))
ACP(1,J)=AC(]1,J)-5AM

AP{IJ}=AR(I;J)}~SUM

CONT INUE

IF(NA-J}120,125,113

I=J

KK=J

KK=KK+1

SAM=0,0

SUM=0,0

IF(1-1)110,111,110

JM=1-1

DO 112 K=1l,yJM

SAM=SAM+ (AP (I,K)#ACP(KyKK)+ACP(IsK)®AP(KsKK))
SUM=SUM+{ AP(I yK)#AP(KyKK)-ACP{I4K)#*ACP(KyKK))
DEN=(AP(II)#AP(I,1)+ACP(I,1)#ACP(I, 1))
IF(DEN) 115,120,115

CONR=AP(1,1)/DEN

CONI=-ACP(1,1)/DEN
APCIyKK)=(CONR#AR(I4KK)=CONI#AC(I,KK))=(CONR#SUM-CONI#SAM)
ACP(I yKK)=(CONI*AR(IosKK)+CONR#AC(TI4KK})~(CONR®#SAM+CONI*#SUM)
IF(NA-KK)120,101y114

CONT INUE

DO 116 I=1,4NA

SAM=0,0

SUM=0.0

IF(1-1)118,119,120

KK=l-1

DO 121 K=1,KK

SUM=SUM+ (AP (I,K)#CP(K)~ACP(1,K)#CCP(K))
SAM=SAM+( AP (I +K)=CCP(K)+ACP(I4K)*CP(K))
DEN=(AP(I1,1)#AP(1,1)}+ACP(I,1)#ACP(I,1))
IF(DEN)122,120,122

CONR=AP(1,1)/DEN

CONI=~ACP(1+1)/DEN
CP(I)=(CONR#C1(I)-CONI*CC(I))~(CONR#SUM=-CONI#SAM)
CCP(IN=(CONI*CL1(I)+CONR®CC(I))-(CONI=SUM+CONR#SAM)
XR(NA)=CP(NA)
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XI(NA)=CCP(NA)
NB=NA-1
DO 123 12=1,4NB
I=NB-12+1
SAM=0.0
SUM=0.0
I3=1+1
DO 124 K=I3,4NA
SUM=SUM+(AP(14K)#XR(K)-ACP(I,K)#XI(K))
124 SAM=SAM+(AP(I,K)eXT(K)+ACP(I,K)#XR{(K))
XR(I)=CP(I)-SUM
123 XI(I)=CCP(I)-SAM
RETURN
130 PRINT 200
200 FORMAT (19HODETERMINANT = ZERO)
RETURN
120 PRINT 201
201 FORMAT (6HOERROR)
RETURN
END
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APPENDIX C

NUMERICAL EXAMPLE

- 40 -




. NUMERICAL EXAMPLE

In this Appendix we present a numerical example illustrating the pro-
grams described in Appendices A and B. Consider

Pi1Yo + Piop *+ Pyafy + Pyalp = 0, 1 = 1,2,3,4,

where in the physical problem Y, , ¢ , § and E, are Laplace transforms of
the following four degrees of freedom:

Yo = rigid body translation
- @ = rigid body pitch

g = first fuel sloshing

§» = second fuel sloshing

let the polynomial elements of the matrix P be:

i Py, =S + 7.1131409 x 1073
- P,, = 3.3673847 x 10798 + 7.7574536 x 1074
: Pzp =8
P,y = S
P;, = 1.3717434 x 10725% - 2,5805617 x 10%S - 4.3492353 x 10t
B P,y = S + 1.8100787 § + 1.3966334
) Py, = - 2.3408524 x 10%8° - 9.7847885
P,, = - 6.7790616 s° - 9.7847893
P o = 6.3417457 x 107282
. Fps = - 3.6441732 x 107582 - 1.5232815 x 1073
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Pyg = S° +2.75 x 10715 + 7.5625

Byz = 0

Py, = 9.9826665 x 10775

P,, = - 1.6612538 x 107587 - 2.3978274 x 107
Psg = O

P, = ¢ +2.78 x 10715 + 7.7283998

~ Program MO30l requires the matrix whose elements are coefficients of
S to be nonsingular. Without altering the spectrum of eigenvalues, it is
possible to multiply the first column of matrix P by S . This is essen-
tially equivalent to the system

SPy1(V/8) + Pypp + Pysly + PyEy = 0, 1= 1,2,3,4 .

Now, applying this conditioning factor to the polynomial elements of the matrix
P given above, the input data for program MO30l are:

A =
(coefficients of S°)

1.0 1.3717434 x 1072 6.3417457 x 1072 9.9826665 x 1072
3.3673847 x 1070 1.0 -3,6441732 x 1070 -1.6612538 x 1073
1.0 -2.3408324 x 101 1.0 0.0
1.0 -6.7790616 0.0 1.0
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s

Bl =
(coefficients of §)

7.1131409 x 10~ -2.5805817 x 10} 0.0 0.0
7.7574536 x 1074 1.8100787 0.0 0.0
0.0 0.0 2.75 x 1071 0.0
N\ 0.0 0.0 0.0 2.78 x 10
C =

(coefficients independent of S)

0.0 -4.3492353 x 10+ 0.0 0.0

0.0 1.3966334 -1.5232815 x 1070  -2.3978274 x 107
0.0 -9.7847893 7.5625 0.0

0.0 -9.7847893 0.0 7.7283998

In computing the corresponding eigenvectors in subprograms MO308
and MO309, the original unconditioned data are used. Matrices Al (coefficients
of S52), Bl (coefficients of S) and C (coefficients independent of §) cor-
respond, respectively, to matrices A, Bl, and C given above with the exception
that the first column in each of the above matrices must be replaced as follows.

0.0 1.0
-5
Column One 0.0 Column One 3.3673847 x 10
Al = ’ Bl = and
0.0 l.o

o/
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7.1131409 x 1079

-4
Column One 7.7574536 x 10

0.0

0.0

Other input values n

NSO =5 and five values of 8SS

(14

cessary for this example are NN =4 , 1Z =1,
= 6, -0.4, -0.2, 0.0, 0O.2.

The computed eigenvalues and corresponding eigenvectors based on
these data are listed below. Execution time of this program for the given
data on our 1620 IBM computer was approximately 15 min. Note that the exe-
cution time would be considerably reduced if one could use a faster computer
with greater storage, e.g., an IBM 7090 or 360.
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THE EIGENVALUES

-+0313530388752723
-¢9107409792013360 «7908257742484470
-+ 1510156405298613 2.7885845745208050
~+3588551179168403 3.0826959892069850
THE EIGENVALUE = -3.,135303887527230E-02 0.000000000000000E~-99

THE CORRESPONDING EIGENVECTOR

1 « 1000000000000000E+401 «0000000000000000E~99
2 -«5678892331866050E-03 «0000000000000000£~99
3 «3412808668328876E-02 «0000C00000000000E-99
4 «3340719024749410E-02 »0000000000000000E~99
THE EIGENVALUE = -9.107409792013360E-01 7.908257742484470E-01

THE CORRESPONDING EIGENVECTOR

1 -«2049164003771471E+01 ~e2451688498958219E+02
2 «1000000000000000E+01 «0000000000000000€E~-99
3 +2802946774896149E+00 ~«7195803054258117E+01
4 -«6659367603751580E+00 -e4074082319513876E+01
THE EIGENVALUE = -=1.510156405298613E-01 2.788584574520805E+00

THE CORRESPONDING EIGENVECTOR

Ly

1 «2532377948525678E-01 ~e6408295748643520E-01

2 -¢2518910608894471E-02 «2571981414828410E-04

3 ~+9607198912245160E+00 e 4623725262937161E+00

4 «1000000000000000E+01 +«0000000000000000E-99

THE EIGENVALUE = -3.588551179168403E-01 3.,082695989206985E+00
THE CORRESPONDING EIGENVECTOR

1 «2799901067746250E+00 ~e5343778898294774E+00

2 «4876980626030941E-02 «4230670695054194E-02

3 «1357835994917070E+01 «1786710202015887E+00

4 »1000000000000000E+01 «0000000000000000E~99
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